Combined analysis of DTI and fMRI data reveals a joint maturation of white and grey matter in a fronto-parietal network.
نویسندگان
چکیده
The aim of this study was to explore whether there are networks of regions where maturation of white matter and changes in brain activity show similar developmental trends during childhood. In a previous study, we showed that during childhood, grey matter activity increases in frontal and parietal regions. We hypothesized that this would be mediated by maturation of white matter. Twenty-three healthy children aged 8-18 years were investigated. Brain activity was measured using the blood oxygen level-dependent (BOLD) contrast with functional magnetic resonance imaging (fMRI) during performance of a working memory (WM) task. White matter microstructure was investigated using diffusion tensor imaging (DTI). Based on the DTI data, we calculated fractional anisotropy (FA), an indicator of myelination and axon thickness. Prior to scanning, WM score was evaluated. WM score correlated independently with FA values and BOLD response in several regions. FA values and BOLD response were extracted for each subject from the peak voxels of these regions. The FA values were used as covariates in an additional BOLD analysis to find brain regions where FA values and BOLD response correlated. Conversely, the BOLD response values were used as covariates in an additional FA analysis. In several cortical and sub-cortical regions, there were positive correlations between maturation of white matter and increased brain activity. Specifically, and consistent with our hypothesis, we found that FA values in fronto-parietal white matter correlated with BOLD response in closely located grey matter in the superior frontal sulcus and inferior parietal lobe, areas that could form a functional network underlying working memory function.
منابع مشابه
The role of fronto-parietal and fronto-striatal networks in the development of working memory: a longitudinal study.
The increase in working memory (WM) capacity is an important part of cognitive development during childhood and adolescence. Cross-sectional analyses have associated this development with higher activity, thinner cortex, and white matter maturation in fronto-parietal networks. However, there is still a lack of longitudinal data showing the dynamics of this development and the role of subcortica...
متن کاملDevelopment of a superior frontal-intraparietal network for visuo-spatial working memory.
Working memory capacity increases throughout childhood and adolescence, which is important for the development of a wide range of cognitive abilities, including complex reasoning. The spatial-span task, in which subjects retain information about the order and position of a number of objects, is a sensitive task to measure development of spatial working memory. This review considers results from...
متن کاملIdentifying the neural correlates of executive functions in early cerebral microangiopathy: a combined VBM and DTI study
Cerebral microangiopathy (CMA) has been associated with executive dysfunction and fronto-parietal neural network disruption. Advances in magnetic resonance imaging allow more detailed analyses of gray (e.g., voxel-based morphometry-VBM) and white matter (e.g., diffusion tensor imaging-DTI) than traditional visual rating scales. The current study investigated patients with early CMA and healthy ...
متن کاملThe Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery
Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...
متن کاملMorphometry and connectivity of the fronto-parietal verbal working memory network in development.
Two distinctly different maturational processes - cortical thinning and white matter maturation - take place in the brain as we mature from late childhood to adulthood. To what extent does each contribute to the development of complex cognitive functions like working memory? The independent and joint contributions of cortical thickness of regions of the left fronto-parietal network and the diff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research. Cognitive brain research
دوره 18 1 شماره
صفحات -
تاریخ انتشار 2003